

Observer effects

Chad Demarest Social Sciences Branch, NEFSC September 19, 2012

Question: Do vessels behave differently when they have an observer on board relative to when they don't?

Answer: At the margin, they probably do.

So, how can we tell?

Difference in differences model, based on paper by Benoit and Allard (2009).

- Looking for sequences of trips from the same vessel that meet one of two criteria:
 - Three unobserved trips in a row (UUU), or
 - One observed trip sandwiched between unobserved trips (UOU)
- Data restricted to trips w/in 21 days of each other, and triplets may not overlap fishing years

Strata:

- Pre-sector and post-sector fishing years
 - Pre-sector = 2007-2009
 - Post-sector=2010-2011
- Gears
 - Fixed (longline, gillnet)
 - Trawl
 - Hand gears excluded from analysis
- Areas
 - GOM, GB*, SNE/MA (*USCA trips excluded)

Analysis metrics:

- All landed pounds (y1, delta_k_all)
- 2. Roundfish pounds (y2, delta_round_lbs)
- 3. Grounfish pounds (y3, delta_gfish_lbs)
- 4. Nongroundfish pounds (y4, delta_nongfish_lbs)
- 5. Cod pounds (y5, delta_cod_lbs)
- Groundfish total value (y6, delta_gfish_val)
- 7. Nongroundfish total value (y7, delta_nongfish_val)
- 8. Reported latitude (y8, delta_lat)
- 9. Reported longitude (y9, delta_lon)
- 10. Trip duration (y10, delta_dur)

Steps in the model:

- 1. From the triplets, pick either a lead or lag trip to compare to the middle trip
 - UOU or UUU becomes UO or UU, by randomly selecting either the first or last trip
- 2. Subtract the metric value for the lead/lag trip from that of the center trip
- 3. Divide that value by the mean value for that vessel across strata (year/area/gear)

$$\Delta O_{yfv} = \left(\frac{O - U}{\overline{U}}\right) 100$$

$$\Delta U_{yfv} = \left(\frac{U^1 - U^2}{\overline{U}}\right) 100$$

These equations scale the paired-trip differences by the unobserved mean value for every vessel in the dataset. Vessels with less than three sequences are excluded from the analysis.

Last step:

4. Calculate the difference between the median value for delta_U's and delta_O's

$$M_{\Delta U - \Delta O} = median \{\Delta_U\} - median \{\Delta_O\}$$

Statistical tests

Location differences estimated using bootstrap sampling from Mu and Mo values

Lack of overlap with zero implies that there is a 95% probability that the true median values for each population are significantly different.

Distribution shape differences tested using

- Kolmogorov-Smirnov statistic is used to test for general differences in shape
- Kuiper statistic is used to test for differences in the extremities

Results

VAR	metric	n_u	n_o	delta_med	ci2_5	ci97_5	P_KSA	P_KA	med_u	med_o	med_global
у1	kept_all	16068	2985	4.67	2.33	6.78	0.0000	0.0000	-0.5824	-5.2569	-1.0100
y2	roundfish_lbs	14487	2749	2.00	0.30	4.69	0.0000	0.0000	-0.0493	-2.0508	-0.2053
у3	groundfish_lbs	16068	2985	2.91	0.70	5.27	0.0000	0.0000	-0.4357	-3.3471	-0.6486
y4	nongroundfish_lbs	13686	2621	1.02	0.30	2.19	0.0002	0.0001	0.0000	-1.0191	-0.0925
y5	cod_lbs	12463	2480	0.00	0.00	1.55	0.0000	0.0000	0.0000	0.0000	0.0000
у6	groundfish_val	16068	2985	3.20	1.40	5.43	0.0000	0.0000	-0.6821	-3.8792	-1.0544
у7	nongroundfish_val	13685	2621	2.99	0.97	5.60	0.0001	0.0000	-0.0606	-3.0529	-0.4983
у8	latitude	11840	1724	0.00	0.00	0.00	0.0355	0.0000	0.0000	0.0000	0.0000
y 9	longitude	11840	1724	0.00	0.00	0.00	0.0003	0.0000	0.0000	0.0000	0.0000
y10	days_fished	16068	2985	1.53	0.01	2.48	0.0000	0.0000	0.0000	-1.5341	0.0000

Notes: Data for entire time period, FY 2007-2012 to date. Cl's computed based on bootstraps w/ 0.5 sampling rate and 1000 replicates.

Results, pre-Sector years

VAR	metric	n_u	n_o	delta_med	ci2_5	ci97_5	P_KSA	P_KA	med_u	med_o	med_global
y1	kept_all	12376	1178	4.27	1.40	6.29	0.0000	0.0000	-0.6199	-4.8890	-0.8193
y2	roundfish_lbs	10920	988	0.55	0.00	3.68	0.0000	0.0000	0.0000	-0.5476	0.0000
у3	groundfish_lbs	12376	1178	2.12	0.27	4.97	0.0000	0.0000	-0.3083	-2.4243	-0.3870
y4	nongroundfish_lbs	10256	989	0.88	0.00	1.89	0.1269	0.1463	0.0000	-0.8805	-0.0059
y 5	cod_lbs	9862	870	0.00	0.00	0.00	0.0000	0.0000	0.0000	0.0000	0.0000
у6	groundfish_val	12376	1178	3.48	1.77	6.24	0.0000	0.0000	-0.5049	-3.9855	-0.7222
у7	nongroundfish_val	10256	989	1.87	-0.08	4.18	0.2237	0.0841	0.0000	-1.8650	-0.1690
y8	latitude	10222	895	0.00	0.00	0.00	0.0484	0.0005	0.0000	0.0000	0.0000
y 9	longitude	10222	895	0.00	0.00	0.00	0.0028	0.0000	0.0000	0.0000	0.0000
y10	days_fished	12376	1178	0.09	0.00	1.75	0.0007	0.0000	0.0000	-0.0861	0.0000

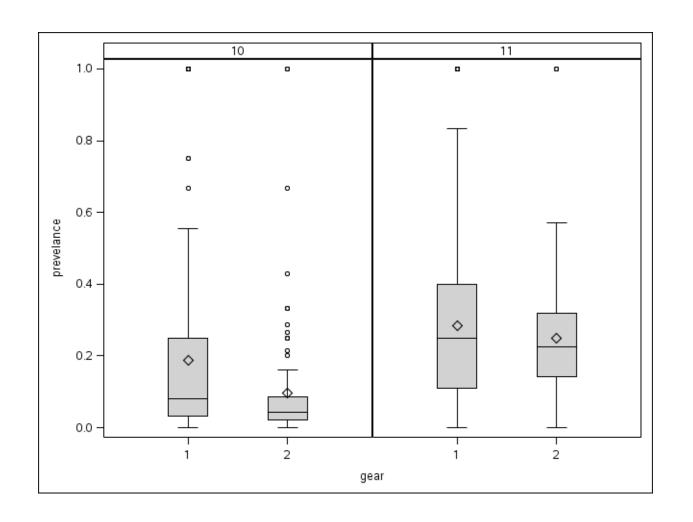
Notes: Data for time period FY 2007-2009. Cl's computed based on bootstraps w/ 0.5 sampling rate and 1000 replicates.

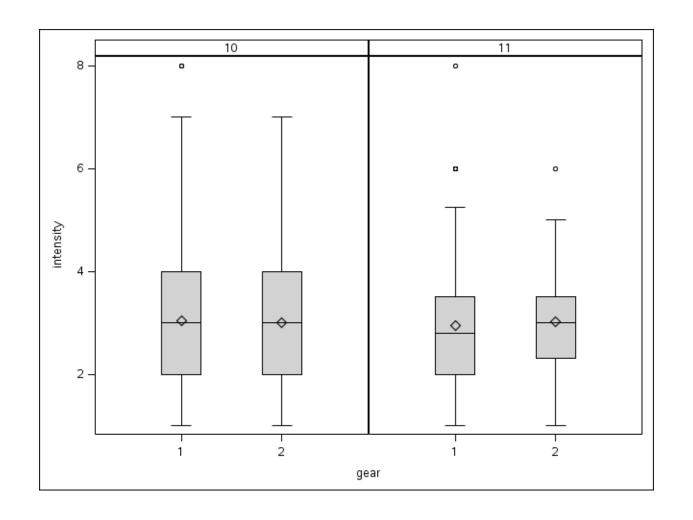
Results, post-Sector years

VAR	metric	n_u	n_o	delta_med	ci2_5	ci97_5	P_KSA	P_KA	med_u	med_o	med_global
у1	kept_all	3692	1807	5.20	1.79	9.57	0.0001	0.0008	-0.3773	-5.5808	-1.8941
y2	roundfish_lbs	3567	1761	0.75	-2.23	4.78	0.1305	0.2894	-2.3853	-3.1400	-2.6733
у3	groundfish_lbs	3692	1807	2.27	-1.64	6.04	0.0201	0.1145	-1.8806	-4.1551	-2.4858
y4	nongroundfish_lbs	3430	1632	1.24	0.24	2.94	0.0002	0.0002	0.0000	-1.2445	-0.3467
y5	cod_lbs	2601	1610	-0.43	-4.29	4.93	0.2725	0.1868	-2.0134	-1.5853	-1.8382
у6	groundfish_val	3692	1807	2.02	-0.83	5.47	0.0023	0.0082	-1.7217	-3.7413	-2.3474
у7	nongroundfish_val	3429	1632	4.11	0.76	7.57	0.0010	0.0000	-0.3345	-4.4407	-1.4666
у8	latitude	1618	829	0.00	0.00	0.00	0.9508	0.8108	0.0000	0.0000	0.0000
у9	longitude	1618	829	0.00	0.00	0.00	0.7402	0.6631	0.0000	0.0000	0.0000
y10	days_fished	3692	1807	2.15	0.34	3.32	0.0000	0.0001	0.0000	-2.1463	-0.0662

Notes: Data for time period FY 2010-2012 through September 1. Cl's computed based on bootstraps w/ 0.5 sampling rate and 1000 replicates.

What does this all mean?


- Differences in vessel behavior across several metrics detectable at various strata
- Differences across metrics indicative of behavior change due to observer, but this tells us nothing about discarding behavior



How prevalent is significant behavior change?

How intense?

- Prevalence measured by looking for significant deviations from unobserved mean values on at least one metric
- Intensity measured by number of metrics with significant deviations for each trip pair

Even if we know that vessels alter their fishing behavior in response to carrying an observer, so what?

- Observer coverage generally thought to improve precision of discard estimates. If those estimates are biased due to behavior change, then precision may be meaningless
- Cannot translate behavior changes to discard estimation bias, but discarding is restricted by underlying tow/stock joint production function

Next steps:

- 1. Continue developing observer effect analysis, including triangulating with other analytical techniques (econometric techniques, other diff-in-diff approaches)
- 2. Bound range for population of trips likely to be exhibiting significant observer effects
- Develop understanding of underlying joint production functions to determine stock-specific frontiers for potential unaccounted discards