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The Analysis of Spatial Association by Use of 
Distance Statistics 

Introduced in this paper is a family of statistics, G, that can be used as a measure 
of spatial association in a number of circumstances. The basic statistic is  derived, 
its properties are identijied, and its advantages explained. Several of the G statis- 
tics make it possible to evaluate the spatial association of a variable within a 
specijied distance of a single point. A comparison is made between a general G 
statistic and Moran’s I for  similar hypothetical and empirical conditions. The 
empirical work includes studies of sudden infant death syndrome b y  county in 
North Carolina and dwelling unit prices in metropolitan San Diego by zip-code 
districts. Results indicate that G statistics should be used in conjunction with I in 
order to identijiy characteristics of patterns not revealed by the I statistic alone 
and, specijically, the Gi and GT statistics enable us to detect local “pockets” of 
dependence that may not show up when using global statistics. 

INTRODUCTION 

The importance of examining spatial series for spatial correlation and autocor- 
relation is undeniable. Both Anselin and Griffith (1988) and Arbia (1989) have 
shown that failure to take necessary steps to account for or avoid spatial autocor- 
relation can lead to serious errors in model interpretation. In spatial modeling, 
researchers must not only account for dependence structure and spatial hetero- 
skedasticity, they must also assess the effects of spatial scale. In the last twenty 
years a number of instruments for testing for and measuring spatial autocorrelation 
have appeared. To geographers, the best-known statistics are Moran’s 1 and, to a 
lesser extent, Geary’s c (Cliff and Ord 1973). To geologists and remote sensing 
analysts, the semi-variance is most popular (Davis 1986). To spatial econometri- 
cians, estimating spatial autocorrelation coefficients of regression equations is the 
usual approach (Anselin 1988). 
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led to considerable improvements in the paper. 
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A common feature of these procedures is that they are applied globally, that is, 
to the complete region under study. However, it is often desirable to examine 
pattern at a more local scale, particularly if the process is spatially nonstationary. 
Foster and Gorr (1986) provide an adaptive filtering method for smoothing param- 
eter estimates, and Cressie and Read (1989) present a modeling procedure. The 
ideas presented in this paper are complementary to these approaches in that we 
also focus upon local effects, but from the viewpoint of testing rather than 
smoothing. 

This paper introduces a family of measures of spatial association called G statis- 
tics. These statistics have a number of attributes that make them attractive for 
measuring association in a spatially distributed variable. When used in conjunc- 
tion with a statistic such as Moran’s I, they deepen the knowledge of the processes 
that give rise to spatial association, in that they enable us to detect local “pockets” 
of dependence that may not show up when using global statistics. In this paper, 
we first derive the statistics Gi(d)  and G(d) ,  then outline their attributes. Next, 
the G ( d )  statistic is compared with Moran’s I. Finally, there is a discussion of 
empirical examples. The examples are taken from two different geographic scales 
of analysis and two different sets of data. They include sudden infant death syn- 
drome by county in North Carolina, and house prices by zip-code district in the 
San Diego metropolitan area. 

THE Gi(d) STATISTIC 

This statistic measures the degree of association that results from the concentra- 
tion of weighted points (or area represented by a weighted point) and all other 
weighted points included within a radius of distance d from the original weighted 
point. We are given an area subdivided into n regions, i = 1,  2, . . . , n, where 
each region is identified with a point whose Cartesian coordinates are known. 
Each i has associated with it a value x (a weight) taken from a variable X. The 
variable has a natural origin and is positive. The Gi(d)  statistic developed below 
allows for tests of hypotheses about the spatial concentration of the sum of x values 
associated with the j points within d of the ith point. 

The statistic is 

n 

z W,(d)Xj 

x xj 
Gi(d)  = ’=’ , j not equal to i , 

j =  1 

where {w,} is a symmetric one/zero spatial weight matrix with ones for all links 
defined as being within distance d of a given i ;  all other links are zero including 
the link of point i to itself. The numerator is the sum of all xj within d of i but not 
including xi .  The denominator is the sum of all xj not including xi .  

Adopting standard arguments (cf. Cliff and Ord 1973, pp. 32-33), we may fix 
the value xi for the ith point and consider the set of (n - I ) !  random permutations 
of the remaining x values at the j points. Under the null hypothesis of spatial 
independence, these permutations are equally likely. That is, let X j  be the random 
variable describing the value assigned to point j, then 

P(Xj = x,) = l / (n  - 1)  , r z i , 
and E(Xj)  = 2 x,/(n - 1)  . 

r#i 
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Thus E(Gi) = Zwij(d) E ( X j ) / C X j  
j # i  j#i  

= Wi/(n - 1)  , (2) 

where Wi = Zj w,(d) . 

Similarly, 

Since E(Xj”) = 8 $/(n - 1) 
r#i 

= {(G xr)2 - c x;}/(n - l)(n - 2) . 
r+i r#i 

Recalling that the weights are binary 

Z8WijWik = - wi 
j #  k 

and so 

wicjg Wi(Wi - 1)  2 - -  ~ [(Zj xj)2 - Zj $ I }  E(Gi) - ( Z j X j ) 2  l {  (n - 1) + (n - l)(n - 2) 

Thus Var(Gi) = E(Gf) - E2(Gi) 

w -~ Wi(Wi - 1 )  I +  (n - l)(n - 2) (n - 1)2 . 
W,(n - 1 - Wi) Zj xj” 

(n - l)(n - 2) 

Z j  xj cj $ 
If we set ~ = Yi, and ~ - YfI = Y,, , 

(n - 1) (n  - 1) 

W,(n - 1 - Wi) 
(n - 1)“n - 2) 

then Var(G,) = (3) 

As expected, Var(Gi) = 0 when Wi = 0 (no neighbors within d ) ,  or when 
Wi = n - 1 (all n - 1 observations are within d ) ,  or when Yi2 = 0 (all n - 1 
observations are equal). 

Note that Wi, YiI, and Yi2 depend on i .  Since Gi is a weighted sum of the 
variable X j ,  and the denominator of Gi is invariant under random permutations of 
{xj ,  j # i}, it follows, provided WJ(n - 1) is hounded away from 0 and from 1, 
that the permutations distribution of Gi under H ,  approaches normality as n + 00; 

cf. Hoeffding (1951) and Cliff and Ord (1973, p. 36). When d, and thus Wi, is 
small, normality is lost, and when d is large enough to encompass the whole study 
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TABLE 1 
Characteristics of Gi Statistics 

j not equal to i j may equal i 

Statistic Gt(4 G: (4  

Expression 

Definitions 
xj xj 

Y', =- 
(n - 1) 

zj xj 
Yif =- 

n 

Expectation W J ( n  - 1) Wf In 

Variance 
W, (n  - 1 - WJ Y ,  
(n - 1)' (n - 2) Y i  

W f ( n  - W f )  YE 
n'(n - 1) (Yif)' 

area, and thus (n - 1 - Wi)  is small, normality is also lost. It is important to note 
that the conditions must be satisfied separately for each point if its Gi is to be 
assessed via the normal approximation. 

Table 1 shows the characteristic equations for Gi(d) and the related statistic, 
G f ( d ) ,  which measures association in cases where the j  equal to i term is included 
in the statistic. This implies that any concentration of the x values includes the x 
at i .  Note that the distribution of GT(d) is evaluated under the null hypothesis 
that all n! random permutations are equally likely. 

ATTRIBUTES OF Gi STATISTICS 

It is important to note that Gi is scale-invariant (Yi = bXi yields the same scores 
as Xi> but not location-invariant (Yi = a + X i  gives different results than Xi) .  The 
statistic is intended for use only for those variables that possess a natural origin. 
Like all other such statistics, transformations like Yi  = log X i  will change the 
results. 

Gi(d) measures the concentration or lack of concentration of the sum of values 
associated with variable X in the region under study. Gi(d) is a proportion of the 
sum of all xj values that are within d of i. If, for example, high-value x.s are within 
d of point i, then Gi(d) is high. Whether the Gi(d) value is statisticallfy significant 
depends on the statistic's distribution. 

Earlier work on a form of the Gi(d) statistic is in Getis (1984), Getis and Franklin 
(1987), and Getis (1991). Their work is based on the second-order approach to 
map pattern analysis developed by Ripley (1977). 

In typical circumstances, the null hypothesis is that the set of x values within d 
of location i is a random sample drawn without replacement from the set of all 
x values. The estimated Gi(d) is computed from equation (1) using the observed 
xj values. Assuming that Gi(d) is approximately normally distributed, when 

Zi = {Gi(d) - E[Gi(d)]}/- (4) 

is positively or negatively greater than some specified level of significance, then 
we say that positive or negative spatial association obtains. A large positive Zi 
implies that large values of xj (values above the mean xj) are within d of point i. A 
large negative Zi means that small values of xj are within d of point i. 
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A special feature of this statistic is that the pattern of data points is neutralized 
when the expectation is that all x values are the same. This is illustrated for the 
case when data point densities are high in the vicinity of point i ,  and d is just large 
enough to contain the area of the clustered points. Theoretical G,(d) values are 
high because Wi is high. However, only if the observed xj values in the vicinity of 
point i differ systematically from the mean is there the opportunity to identify 
significant spatial concentration of the sum of xjs. That is, as data points become 
more clustered in the vicinity of point i ,  the expectation of G,(d) rises, neutralizing 
the effect of the dense cluster o f j  values. 

In addition to its above meaning, the value of d can be interpreted as a distance 
that incorporates specified cells in a lattice. It is to be expected that neighboring 
Gi will be correlated if d includes neighbors. To examine this issue, consider a 
regular lattice. When n is large, the denominator of each G, is almost constant so 
it follows that corr (Gi, Gj> = proportion of neighbors that i and j have in common. 

EXAMPLE 1 
Consider the rooks case. Cell i has no common neighbors with its four imme- 

diate neighbors, but two with its immediate diagonal neighbors. The numbers of 
common neighbors are as illustrated below: 

0 1 0  
0 2 0 2 0  
l O i O l  
0 2 0 2 0  

0 1 0  

All the other cells have no common neighbors with i .  Thus, the G-indices for the 
four diagonal neighbors have correlations of about 0.5 with G,, four others have 
correlations of about 0.25 and the rest are virtually uncorrelated. 

For more highly connected lattices (such as the queen's case) the array of 
nonzero correlations stretches further, but the maximum correlation between any 
pair of G-indices remains about 0.5. A 
EXAMPLE 2 

m m m m m m m m m m  
m A A A m m B B B m  
m A A A m m B B B m  
m A A A m m B B B m  
m m m m m m m m m m  

Set A + B = 2m, therefore? = m; n = 50; 
A 2 0; 
B 2 0; 
put A = m(l + c), B = m(l - c),  0 5 c 5 1 
Using this example, the G, and Gf statistics are compared in the following table. 

Gi and Gf Values (queen's case; non-edge cells) 

cell Gi Z(G) G: ZG:) 
8 + 8c 9 + 9c 

50 49 - c 
9 + 4c 

49 - c 50 

5.47 

2.43 

A, surrounded by As 5.30' 

A, adjacent to ms + 3c 2.06' 
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. .. 
8 + 3c 9 + 3c 

central m, adjacent to As 1.89' 1.82 
49 50 

other m, adjacent to As 
8 + 2c 

49 
1.26' 

9 + 3c 
50 

1.21 

Values for Bs are the same, with negative signs attached. 
# These values are lower bounds as c + 1; they vary only slightly with c.  

We note that Gi and GT are similar in this case; if the central A was replaced by 
a B, Z(Gi) would be unchanged, whereas Z(GT) drops to 4.25. Thus, G, and GT 
typically convey much the same information. A 
EXAMPLE 3 

Consider a large regular lattice for which we seek the distribution under Ho for 
GT with W i  neighbors. Let p = proportion of As = proportion of Bs and 1 - 2p 
= proportion of ms. 

Let (kl, k2, k3) denote the number of As, Bs, and ms, respectively so that 
kl + k, + k3 = n. For large lattices, in this case, the joint distribution is 
approximately tri(mu1ti-)nomial with index Wand parameters ( p ,  p ,  1 - 2p). 

wi + ( k ,  - k,)c Since GT = 
n 

clearly E(G?) = Wi/n as expected 

and V(G?) = 2pWi/n , 

reflecting the large sample approximation. The distribution is symmetric and the 
standardized fourth moment is 

This is close to 3 provided pWi is not too small. 
Since we are using Gi and GT primarily in a diagnostic mode, we suggest that 

W i  2 8 at least (that is, the queen's case), although further work is clearly neces- 
sary to establish cut-off values for the statistics. A 

A GENERAL G STATISTIC 

Following from these arguments, a general statistic, G(d), can be developed. 
The statistic is general in the sense that it is based on all pairs of values (xi, xi) 
such that i and j are within distance d of each other. No particular location i is 
fixed in this case. The statistic is 
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The G-statistic is a member of the class of linear permutation statistics, first 
introduced by Pitman (1937). Such statistics were first considered in a spatial 
context by Mantel (1967) and Cliff and Ord (1973), and developed as a general 
cross-product statistic by Hubert (1977 and 1979), and Hubert, Golledge, and 
Costanzo (1981). 

For equation (5), 

W = Z C wij(d) , j not equal to i 
i = l  j - 1  

so that 

E[G(d)] = W/[n(n - l)] . 

The variance of G follows from Cliff and Ord (1973, pp. 70-71): 

where mj = Z x<, j = 1, 2, 3, 4 , 

and 

i = l  

dr) = n(n - l)(n - 2) . . . (n - r + 1) 

The coefficients, B, are 

Bo = (n2 - 3n + 3)S, - ns, + 3w2 ; 

Bl = - [ ( n 2  - n)S1 - 2nSz + 3WI ; 

B2 = -[2nS1 - (n  + 3)s~ + 6W] ; 

B3 = 4(n - 1)S, - 2(n + 1)SZ + sw2 ; 
and B, = S, - S2 + W2 

where S, = '/z C 2 (wij + wji)' , j not equal to i , 

and S2 = Z (wi. + w.~)' ; 

i j  

wi, = Zjw, , j not equal to i ; 
i 

thus 

Var(G) = E(G2) - {W/[n(n - l)]}, . (7) 

T H E  G(d) STATISTIC A N D  MORAN'S I COMPARED 

The G(d) statistic measures overall concentration or lack of concentration of all 
pairs of (xi, xj) such that i a n d j  are within d of each other. Following equation (5), 
one finds G(d) by taking the sum of the multiples of each xi with all xjs within d of 
all i as a proportion of the sum of all xixj. Moran's I ,  on the other hand, is often 
used to measure the correlation of each xi with all xjs within d of i and, therefore, 
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is based on the degree of covariance within d of all xi .  Consider K1, K2 as constants 
invariant under random permutations. Then using summation shorthand we have 

G(d) = K ,  ZZ wij xixj  

and 1(d) = K2 Z.C. w~ (xi - X)(xj - 3) . 

= (K2lKl) G(d) - K2X Z (wi. + w , ~ ) x ~  + K2T2W 

Z wv and w , ~  = Z wji . 
J j 

where wi, = . 

Since both G(d) and Z(d) can measure the association among the same set of 
weighted points or areas represented by points, they may be compared. They will 
differ when the weighted sums Zwi.xi and Z W , ~ X ~  differ from ME, that is, when the 
.patterns of weights are unequal. The basic hypothesis is of a random pattern in 
each case. We may compare the performance of the two measures by using their 
equivalent Z values of the approximate normal distribution. 

EXAMPLE 4 

Set A + B = 2m, thereforex = m; n = 50; 
Let us use the lattice of Example 2. As before, 

A 2 0; 
B 2 0; 

put A = m(l + c), B = m(l - c), 
In addition, put 

0 5 c 5 1. 

a = A - m ;  
B = 2m - A = m - a; 
B - m = a ;  
m 2 a; 
j not equal to i. 

For the rooks case, W = 22 wij = 170. 

n wij(xi - X)(xj - Z) - 50 * 24a2 2 = o.784 - 
170 * 18a2 Z =  w Z ( X i  - w)2 

for all choices of a, m. 

Var (1) = 0.010897 

Z(Z) = 7.7088 whenever A > B . 
ZZ wv xixj - 24A2 + 24B2 + 24Am + 24Bm + 74m2 G =  - 

ZZ xixj 

- 170 + 48c2 

2500m2 - 9A2 - 9B2 - 32m2 

- 
2450 - 18c2 

When c = 0, A = B = m, and G is a minimum. 

G,, = 17012450 = 0.0694 and 

Var(G,J = 0.0000 from equation (7) 
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When c = 1, A = 2m, B = 0, and G is a maximum. 

G,, = 21812432 = 0.0896 . 

Var(GmX) = 0.000011855 . 
Z(G,x) = 5.87 for any m 

G depends on the relative absolute magnitudes of the sample values. Note that 
I is positive for any A and B, while G values approach a maximum when the ratio 
of A to B or B to A becomes large. A 
EXAMPLE 5 

m m m m m m m m m m  
m m m m m m m m m m  
m m A m m m m B m m  
m m m m m m m m m m  
m m m m m m m m m m  

A, B, f ,  n, Was in Examples 2 and 4. 

Z = 0, for any possible A, B, or m . 
Z(Z) = 0.1920 since E(Z) = - l/(n - l), whenever A > B . 

G,, = G,, = 0.0694, for any possible A, B, or m . 

Var(Gmi,) = 0, but Var(G,,) = 0.00000059 . 

Z(Gmx) = 0.0739 . 

Neither statistic can differentiate between a random pattern and one with little 
spatial variation. Contributions to G(d) are large only when the product xixj is 
large, whereas contributions to Z(d) are large when (xi - m)(xj - m) is large. It 
should be noted that the distribution is nowhere near normal in this case. A 
EXAMPLE 6 

m m m m m m m m m m  
m A B A m m B A B m  
m B A B m m A B A m  
m A B A m m B A B m  
m m m m m m m m m m  

A, B, f ,  n, W as in the above examples. 

Z = -0.7843 

Var(Z) = 0.010897 

Z(Z) = -7.3177 

When A = 2m and B = 0 ,  

G = 0.0502 

Var(G) = 0.00001189 

Z(G) = -5.5760 
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Standard Normal Variates for G ( d )  and Z(d) under Varying Circumstances for a Specified d Value 

Situation ZG) z(J) 

HH + +  + +  
HM + + 
MM 0 0 

Random 0 0 
HL _ 
ML -#  - 
LL 

- _  

+ +  _ _  
Key: 
HH = pattern of high values of xs within d of other high r values 
M = moderate values 
L = low values 
Random = no discernible pattern of xs 
+ + = strong positive association (high positive Z scores) 
+ = moderate positive association 
0 = no association 

# This combination tends to be more negative than HL. 

The juxtaposition of high values next to lows provides the high negative covari- 
ance needed for the strong negative spatial autocorrelation Z(Z), but it is the 
multiplicative effect of high values near lows that has the negative effect on Z(G). 
A 

Table 2 gives some idea of the values of Z(G) and Z(Z) under various circum- 
stances. The differences result from each statistic’s structure. As shown in the 
examples above, if high values within d of other high values dominate the pattern, 
then the summation of the products of neighboring values is high, with resulting 
high positive Z(G) values. If low values within d of low values dominate, then the 
sum of the product of the xs is low resulting in strong negative Z(G) values. In the 
Moran’s case, both when high values are within d of other high values and low 
values are within d of other low values, positive covariance is high, with resulting 
high Z(Z) values. 

GENERAL DISCUSSION 

Any test for spatial association should use both types of statistics. Sums of 
products and covariances are two different aspects of pattern. Both reflect the 
dependence structure in spatial patterns. The Z(d) statistic has its peculiar weak- 
ness in not being able to discriminate between patterns that have high values 
dominant within d or low values dominant. Both statistics have difficulty discern- 
ing a random pattern from one in which there is little deviation from the mean. 

If a study requires that Z(d) or G(d)  values be traced over time, there are 
advantages to using both statistics to explore the processes thought to be respon- 
sible for changes in association among regions. If data values increase or decrease 
at the same rate, that is, if they increase or decrease in proportion to their already 
existing size, Moran’s Z changes while G(d)  remains the same. On the other hand, 
if all x values increase or decrease by the same amount, G ( d )  changes but Z(d) 
remains the same. 

It must be remembered that G(d)  is based on a variable that is positive and has 
a natural origin. Thus, for example, it is inappropriate to use G(d)  to study resid- 
uals from regression. Also, for both Z(d) and G(d)  one must recognize that trans- 
formations of the variable X result in different values for the test statistic. As has 
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been mentioned above, conditions may arise when d is so small or large that tests 
based on the normal approximation are inappropriate. 

EMPIRICAL EXAMPLES 

The following examples of the use of G statistics were selected based on size 
and type of spatial units, size of the x values, and subject matter. The first is a 
problem concerning the rate of sudden infant death syndrome by county in North 
Carolina, and the second is a study of the mean price of housing units sold by zip- 
code district in the San Diego metropolitan region. In both cases the data are 
explained, hypotheses made clear, and G ( d )  and Z(d) values calculated for com- 
parable circumstances. 

1 .  Sudden Infant Death Syndrome (SIDS) by County in North Carolina 
SIDS is the sudden death of an infant one year old or less that is unexpected 

and inexplicable after a postmortem examination (Cressie and Chan 1989). The 
data presented by Cressie and Chan were collected from a variety of sources cited 
in the article. Among other data, the authors give the number of SIDs by county 
fo,r the period 197S1984, the number of births for the same period, and the 
coordinates of the counties. We use as our data the number of SIDs as a proportion 
of births multiplied by 1000 (see Figure 1). Since no viral or other causes have 
been given for SIDS, one should not expect any spatial association in the data. To 
some extent, high or low rates may be dependent on the health care infants 
receive. The rates may correlate with variables such as income or the availability 
of physicians’ services. In this study we shall not expect any spatial association. 

Table 3 gives the values for the standard normal variate of I and G for various 
distances. 

Results using the G statistic verify the hypothesis that there is no discernible 
association among counties with regard to SIDS rates. The values of Z(G) are less 
than one. In addition, there seems to be no smooth pattern of Z values as d 
increases. The Z(Z) results are somewhat contradictory, however. Although none 
are statistically significant at the .05 level, Z(Z) values from 30 to 50 miles, about 
the distance from the center of each county to the center of its contiguous neigh- 
boring counties, are well over one. This represents a tendency toward positive 
spatial autocorrelation at those distances. Taking the two results together, one 
should be cautious before concluding that a spatial association exists for SIDS 

hs per 1000 Births 

- 
FIG. 1. Sudden Infant Death Rates for Counties of North Carolina, 197S1984 
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TABLE 3 
Spatial Association among Counties: SIDS Rates by County in North Carolina, 1979-1984 

din miles ZG) Z(0 

10 0.82 - 0.55 
20 0.29 0.99 
30 -0.12 1.68 
33# 0.40 1.84 
40 -0.04 1.32 
50 0.60 1.20 
60 -0.36 0.48 
70 -0.28 - 0.45 
80 - 0.19 - 0.13 
90 0.11 -0.19 
100 0.30 0.18 

+At all distances of this length or longer each county is linked to at least one other county. 

TABLE 4 
Highest Positive and Negative Standard Normal Variates by County forZGf(d) and ZG,(d): 
SIDS Rates in North Carolina, 197!3-1984 (d = 33 miles) 

Countv ZGf(d) Countv ZGdd) 

Highest Positive 
Richmond + 3.34 Richmond +3.62 

Scotland +2.78 Hoke +1.78 

Cleveland + 1.78 Moore + 1.39 
Highest Negative 

Robeson + 3.12 Robeson +3.09 

Hoke +2.12 Northampton + 1.44 

Washington -2.63 Washington - 2.18 
Dare - 1.84 Davie - 1.92 
Davie - 1.76 Dare - 1.70 
Cherokee - 1.55 Bertie - 1.64 
Tyrrell - 1.53 Stokes -1.58 

among counties in North Carolina. Perhaps more light can be shed on the issue 
by using the G,(d) and GT(d) statistics. 

Table 4 and Figure 2 give the results of an analysis based on the Gi(d)  and 
GT(d) statistics for a d of thirty-three miles. This represents the distance to the 
furthest first-nearest neighbor county of any county. 

The GT(d) statistic identifies five of the one hundred counties of North Carolina 
as significantly positively or negatively associated with their neighboring counties 
(at the .05 level). Four of these, clustered in the central south portion of the state, 
display values greater than + 1.96, while one county, Washington near Albemarle 
Sound, has a Z value of less than - 1.96 (see Figure 2). Taking into account values 
greater than + 1.15 (the 87.5 percentile), it is clear that several small clusters in 
addition to the main cluster are widely dispersed in the southern part of the state. 
The main cluster of valves less than - 1.15 (the 12.5 percentile) is in the eastern 
part of the state. It is interesting to note that many of the counties in this cluster 
are in the sparsely populated swamp lands surrounding the Albemarle and Pam- 
lico Sounds. If overall error is fixed at 0.05 and a Bonferroni correction is applied, 
the cutoff value for each county is raised to about 3.50. However, such a figure is 
unduly conservative given the small numbers of neighbors. 
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Em <-1.96 

Gi'(d): 2 scores 
d = FNN = 33 miles 

-i 
miles 

I >+1.96 

FIG. 2. Z[Gi *(d=furthest nearest neighbor=33 miles)] for SIDS Rates of Counties of North 
Carolina, 1979-84. 

In this case it becomes clear that an overall measure of association such as G(d)  
or I(d)  can be misleading because it prompts one to dismiss the possibility of 
significant spatial clustering. The G,(d) statistics, however, are able to identify the 
tendency for positive spatial clustering and the location of pockets of high and low 
spatial association. It remains for the social scientist or epidemiologist to explain 
the subtle patterns shown in Figure 2. 

2. Dwelling Unit Prices in San Diego County by Zip-Code Area, September 1989 
Data published in the Los Angeles Times on October 29, 1989, give the adjusted 

average price by zip code for all new and old dwelling units sold by budders, real 
estate agents, and homeowners during the month of September 1989 in San Diego 
County (see Appendix). The data are supplied by TRW Real Estate Information 
Services. One outlier was identified: Rancho Santa Fe, a wealthy suburb of the 
city of San Diego, had prices of sold dwelling units that were nearly three times 
higher than the next highest district (La Jolla). Since neither statistic is robust 
enough to be only marginally affected by such an observation, Rancho Santa Fe 
was not considered in the analysis. 

Although the city of San Diego has a large and active downtown, San Diego 
County is not a monocentric region. One would not expect housing prices to trend 
upward from the city center to the suburbs in a uniform way. One would expect, 
however, that since the data are for reasonably small sections of the metro- 
politan area, that there would be distinct spatial autocorrelation tendencies (see 
Figure 3). High positive I values are expected. G ( d )  values are dependent on the 
tendencies for high values or low values to group. If the low cost areas dominate, 
the G ( d )  value is negative. In this case, G(d)  is a refinement of the knowledge 
gained from Z. 

Table 5 shows that there are strong positive values for Z(Z) for distances of four 
miles and greater. Z(G) also shows highly significant values at four miles and 
beyond, but here the association is negative, that is, low values near low values 
are much more influential than are the high values near high values. Moran's I 
clearly indicates that there is significant spatial autocorrelation, but, without 
knowledge of G(d) ,  one might conclude that at this scale of analysis, in general, 
high income districts are significantly associated with one another. 

By looking at the results of the Gi(d)  statistics analysis for d equal to five, the 
individual district pattern is unmistakable. The Z(GT(5)) values shown in Table 6 
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FIG. 3. San Diego House Prices, September 1989. 

and Figure 4 provide evidence that two coastal districts are positively associated 
at the .05 level of significance while eight central and south central districts are 
negatively associated at the .05 level. There is a strong tendency for the negative 
values to be higher. It is for this reason that the Z(G) values given above are so 
decidedly negative. The districts with high values along the coast have fewer near 
neighbors with similar values than do the central city lower value districts. The 
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TABLE 5 
Spatial Association among Zip Code Districts: Dwelling Unit Prices in San Diego County, 
September 1989 

din miles Z(G) ZU) 

2 -0.67 0.33 
4 -2.36 2.36 
5‘ -2.32 4.13 
6 -2.47 4.16 
8 -2.80 3.51 

10 -2.66 3.57 
12 - 2.20 3.53 
14 - 2.34 3.92 
16 -2.54 4.27 
18 -2.30 3.57 
20 -2.25 2.92 

#At all distances of this length or longer each district is connected to at least one other district. 

TABLE 6 
Highest Positive and Negative Standard Normal Variates by Zip Code District forGT(d) and Gi(d): 
Dwelling Unit Prices in San Diego County, September 1989 (d = 5 miles) 

Neighborhood ZGt(d)  Neighborhood ZCiW 

Cardig 
Solana Beach 
Point Loma 
La Jolla 
Del Mar 

East San Diego 
East San Diego 
East San Diego 
North Park 
Mission Valley 

Highest Positive 
+2.27 Cardiff 
+2.02 Solana Beach 
+ 1.93 Mira Mesa 
+ 1.89 Ocean Beach 
+ 1.55 R. Penasquitos 

- 3.22 East San Diego 
-2.74 East San Diego 
-2.64 North Park 
- 2.56 East San Diego 
-2.38 College 

Highest Negative 

+2.08 
+ 1.81 
+ 1.56 
+ 1.37 
+ 1.33 

-2.99 
-2.54 
-2.48 
-2.48 
- 2.19 

cluster of districts with negative Z(GT) values dominates the pattern. The adjusted 
Bonferroni cutoff is about 3.27, but again is overly conservative. 

CONCLUSIONS 

The G statistics provide researchers with a straightforward way to assess the 
degree of spatial association at various levels of spatial refinement in an entire 
sample or in relation to a single observation. When used in conjunction with 
Moran’s I or some other measure of spatial autocorrelation, they enable us to 
deepen our understanding of spatial series. One of the G statistics’ useful features, 
that of neutralizing the spatial distribution of the data points, allows for the devel- 
opment of hypotheses where the pattern of data points will not bias results. 

When G statistics are contrasted with Moran’s I, it becomes clear that the two 
statistics measure different things. Fortunately, both statistics are evaluated using 
normal theory so that a set of standard normal variates taken from tests using each 
type of statistic are easily compared and evaluated. 
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FIG. 4. Z[Gi *(d=furthest nearest neighbor=S miles)] for House Prices of San Diego County 
Zip Code Districts, September 1989. 
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APPENDIX 
San Diego County Average House Prices for September 1989 by Zip-Code District 

Principal Coordinates 
Neighborhood (miles) Price 22ie Name x Y (in thousands) 

01 
02 
03 
04 
05 
06 
07 
08 
09 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

92024 
92007 
92075 
92014 
92127 
92129 
92128 
92064 
92131 
92126 
92037 
92122 
92117 
92109 
92110 
92111 
92123 
92124 
92120 
92119 
92071 

Encinitas 
Cardiff 
Solana Beach 
Del Mar 
Lake Hodges 
R. Penasquitos 
R. Bemardo 
Poway 
Scripps Ranch 
Mira Mesa 
La Jolla 
University City 
Clairemont 
Beaches 
Bay Park 
Keamy Mesa 
Mission Village 
Tierrasan ta 
Del Cerro 
San Carlos 
Santee 

22 92040 Lakeside 
23 92021 El Cajon 
24 92020 El Cajon 
25 9204 1 La Mesa 
26 92115 College 
27 92116 Kensington 
28 92108 Mission Valley 
29 92103 Hillcrest 
30 92104 North Park 
31 92105 East San Diego 
32 92045 Lemon Grove 
33 92077 Spring Valley 
34 92035 Jamul 
35 92002 Bonita 
36 92139 Paradise Hills 
37 92050 National City 
38 92113 Logan Heights 
39 92102 East San Diego 
40 92101 Downtown 
41 92107 Ocean Beach 
42 92106 Point Loma 
43 92118 Coronado 
44 92010 Chula Vista 
45 92011 Chula Vista 
46 92032 Imperial Beach 
47 92154 Otay Mesa 
48 92114 East San Diego 
Source of Data: Los Angeles Times, October 29, 1989, page K15. 

1 
2 
3 
5 

10 
12 
15 
17 
13 
8 
3 
6 
6 
4 
6 
8 

10 
13 
14 
17 
20 

39 
36 
34 
32 
.14 _ _  
32 
35 
32 
29 
28 
22 
23 
20 
18 
15 
19 
19 
20 
18 
19 
22 

23 24 
24 19 
22 17 
18 16 
14 16 
11 16 
9 16 
8 14 

11 
13 
17 
20 
24 
17 
16 
13 
11 
12 
8 
3 
3 
7 

15 
17 
11 
15 
15 

14 
14 
13 
13 
12 
8 
9 
8 

10 
12 
12 
14 
12 
10 
6 
4 
1 
2 

11 

264 
260 
261 
309 
26.5 _.. 

194 
191 
236 
270 
162 
398 
201 
192 
249 
152 
138 
131 
221 
187 
182 
124 
147 ~~ 

151 
150 
169 
138 
192 
89 

225 
152 
111 
137 
150 
291 
297 
117 
99 
84 
88 

175 
229 
338 
374 
165 
184 
164 
126 
126 
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